Sunday, 1 January 2017

36 Monats Durchschnitt

OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in den letzten fünf Monaten ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16,67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat liefert, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir nicht fraktionierte Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat davor, dass heißt der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist daher 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Daher ist die Prognose für den 13. Monat 38. Durch die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,7 erhalten wir: Thomas Bulkowski8217s erfolgreiche Investitionstätigkeit ließ ihn im Alter von 36 Jahren in den Ruhestand gehen. Er ist ein international bekannter Autor und Trader Mit 30 Jahren Börsenerfahrung und weithin als ein führender Experte auf Chart-Muster angesehen. Er kann erreicht werden Unterstützen Sie diese Seite Klicken Sie auf die Links (unten) führt Sie zu Amazon. Wenn Sie irgendwelche kaufen, zahlen sie für die Überweisung. Bulkowskis 12-Monate Moving Average Geschrieben von und Copyright-Kopie 2005-2016 von Thomas N. Bulkowski. Alle Rechte vorbehalten. Disclaimer: Sie allein sind für Ihre Anlageentscheidungen verantwortlich. Siehe PrivacyDisclaimer für weitere Informationen. Dieser Artikel beschreibt, wie die 12-Monats-gleitenden Durchschnitt verwenden, um Stier und Bär Märkte zu erkennen. 12-Monats-Gleitender Durchschnitt Einleitung Im Folgenden finden Sie ein Liniendiagramm für die monatlichen Schlusskurse des SampP 500-Index und einen 12-monatigen gleitenden Durchschnitt der geschlossenen Positionen (rot dargestellt). Beachten Sie, dass während des Beginns der 2000 bis 2002 Bärenmarkt, fiel der Index unter dem gleitenden Durchschnitt bei A. Das war ein Signal zu verkaufen und in bar bewegen. In der Baisse 2007 bis 2009 sank der Index auch unter den gleitenden Durchschnitt (bei B). In beiden Fällen blieb der Index unter dem gleitenden Durchschnitt, bis die Erholung bei C und D begann. Wenn Sie den 10-monatigen gleitenden Durchschnitt anstelle der 12 verwenden würden, würde der Preis den Durchschnitt im blauen Kreis und auch entlang der CB durchbohren Bewegen Sie sich bei der ersten Berührung. Diese hätten eine unnötige Transaktion verursacht (kaufen dann verkaufen oder umgekehrt), so dass ein 12-monatiger einfacher gleitender Durchschnitt besser funktioniert. Die etwas längeren einfachen gleitenden Durchschnitt erhalten Sie wieder in den Markt etwas später bei C und D als würde die 10-Monats-einfachen gleitenden Durchschnitt. Wenn Sie dies testen sollten, stellen Sie sicher, dass Sie monatliche Schlusskurse und nicht die Höhen oder Tiefs während des Monats verwenden. Youll finden, dass der gleitende Durchschnitt Reduzierung Drawdown und Risiko über Buy-and-Hold. 12-Monate Gleitende Durchschnittliche Handelsregeln Hier sind die Handelsregeln. Kaufen Sie auf dem Markt, wenn der SampP 500 Index über den 12-Monats-einfachen gleitenden Durchschnitt der Schlusskurse steigt. Verkaufen, wenn der Index unter dem gleitenden Durchschnitt sinkt. 12-Monate Gleitende Durchschnittliche Prüfung Ich bat Dr. Tom Helget, eine Simulation auf dem SampP 500 Index von Januar 1950 bis März 2010 laufen zu lassen. Die folgende Tabelle zeigt einen Teil seiner Ergebnisse. Hier ist, was er über den Test sagt. Mein Test lief von 131950 auf 3312010 (20.515 Tage oder 56,17 Jahre) auf GSPC. Trades wurden getroffen, wenn die enge über die n-Periode monatlich einfach gleitenden Durchschnitt auf der offenen des Tages nach dem Signal gekreuzt. Positionen wurden verlassen, wenn die enge Kreuzung unterhalb der gleichen n Periode einfachen gleitenden Durchschnitt auf der offenen des Tages nach dem Signal. Ich erlaubte mir, fraktionierte Aktien zu kaufen. Mein Ausgangswert war 100. Die Perioden der monatlichen einfachen gleitenden Durchschnitt reichten von 6 bis 14. Optimierung ergab die beste Leistung, um die 12-Monats-SMA mit einem Compound Annual Return von 7,15. Wenn man auf 1291954 (das Datum des ersten Handels, das durch das System erzeugt wird) kaufen und bis zum Enddatum halten, wäre das AUTO 7,36 gewesen. Sie können eine Kopie seiner Spreadsheet-Ergebnisse herunterladen, indem Sie auf den Link klicken. Geschrieben von und Copyright-Kopie 2005-2016 von Thomas N. Bulkowski. Alle Rechte vorbehalten. Disclaimer: Sie allein sind für Ihre Anlageentscheidungen verantwortlich. Siehe PrivacyDisclaimer für weitere Informationen. Der Mensch ist der beste Computer, den wir an Bord eines Raumfahrzeugs setzen können, und der einzige, der mit ungelernter Arbeit massenhaft produziert werden kann.


No comments:

Post a Comment